

CRISM Data Users' Workshop Nili Fossae Data Processing Walkthrough

March 22, 2009

Frank Seelos and the CRISM Team

Blue Text: CAT/ENVI interface instructions Green Text: Filename of source data for accompanying figure

The intermediate data processing products, derived data products, and ancillary files presented here are available online:

PDS Geosciences Node: http://pds-geosciences.wustl.edu/workshops/ CRISM SOC: http://crism.jhuapl.edu/CRISM_workshop_2009/

Participants in the CRISM Data Users' Workshop are encouraged to replicate the data processing and analysis presented here as a hands-on exercise

CRISM Example CRISM Observation: FRT000064D9

DBSERVATION DETA	ILS	
ile	FRT000064D9_07_IF166S_TRR2.LBL	
Comment	4001 MSL Site Need CRISM - Nili Fossae	
ear/Day of Year	2007_172	
Observation Class	FRT	
Observation Id	000064D9	
mage Count within Observation Sequence	07	
ile Type	IF	
Macro Number	166	
Sensor Id	0	
Solar Longitude	261.689	
ncidence Angle	62.6	
Emission Angle	20.9	
Phase Angle	65.2	8554023
_ines	480	
Samples	640	1.1
mage Start Time	2007-06-21T06:43:02.326	-
mage Stop Time	2007-06-21T06:45:10.068	10
Start Spacecraft Clock Count	"2/0866875401.48646"	aller .
Stop Spacecraft Clock Count	"2/0866875529.31741"	2
Center Latitude	21.152215	Section of
Center Longitude	74.253485	2

VNIR RGB R: 0.71 μm G: 0.60 μm B: 0.53 μm

NASA

IR RGB R: 2.53 μm G: 1.51 μm B: 1.08 μm

- Typical CRISM data processing work flow (CAT functionality):
 - CAT: PDS to CAT conversion
 - PHT: Photometric correction [COS(i)]
 - ATM: Volcano Scan atmospheric correction (IR)
 - CLN: CIRRUS (CRISM Clean)
 - Destripe (VNIR and IR)
 - Despike (IR)
 - SUM: Summary parameter calculation

IR Progression: PDS to CAT

$ENVI \rightarrow CAT \rightarrow Convert Format: PDS to CAT$ FRT000064D9_07_IF166L_TRR2.IMG

Reverses Spectral Dimension Applies Default Bad Bands

FRT000064D9_07_IF166L_TRR2_CAT.IMG

IASA

Photometric Correction [COS(i)]

NASA

CRISM Workshop - Data Processing Walkthrough

Atmospheric Correction [Volcano Scan]

NASA

$$\label{eq:entropy} \begin{split} \mathsf{ENVI} \to \mathsf{CAT} \to \mathsf{ATP} \ \mathsf{Corrections} \to [\mathsf{Select} \ \mathsf{File}] \to \mathsf{Division} \ \mathsf{by} \ \mathsf{scaled} \ \mathsf{volcano} \ \mathsf{observation} \\ \mathsf{FRT000064D9}_07_\mathsf{IF166L}_\mathsf{TRR2}_\mathsf{CAT}_\mathsf{PHT}.\mathsf{IMG} \\ \end{split} \qquad \qquad \mathsf{FRT000064D9}_07_\mathsf{IF} \ \mathsf{FRT0000064D9}_07_\mathsf{IF} \ \mathsf{FRT000064D9}_07_\mathsf{IF} \ \mathsf{FRT0000064D9}_07_\mathsf{IF} \ \mathsf{FRT0000064D9_07_\mathsf{IF} \ \mathsf{FRT0000064D9}_07_\mathsf{IF} \ \mathsf{FRT0000064D9_07_\mathsf{IF} \ \mathsf{FRT0000064D9_07_\mathsf{$$

FRT000064D9_07_IF166L_TRR2_CAT_PHT_ATM.IMG

CIRRUS [CRISM Clean]

$\label{eq:calibration} \mathsf{ENVI} \to \mathsf{CAT} \to \mathsf{Data} \ \mathsf{Filtering} \to \mathsf{CIRRUS} \to \mathsf{Clean} \ \mathsf{Spectral} \ \mathsf{Cube} \ \mathsf{Select} \ \mathsf{both} \ \mathsf{destripe} \ \mathsf{and} \ \mathsf{despike} \ \mathsf{for} \ \mathsf{IR} \ \mathsf{data}$

CRISM Workshop - Data Processing Walkthrough

IR Spectral Summary Parameters

$\mathsf{ENVI} \to \mathsf{CAT} \to \mathsf{Spectral} \ \mathsf{Analysis} \ \mathsf{Utilities} \to \mathsf{Spectral} \ \mathsf{Summary} \ \mathsf{Products} \to \mathsf{IR} \ \mathsf{Data}$

FRT000064D9_07_IF166L_TRR2... _CAT_PHT_ATM_DST_DSP_SUM.IMG

VNIR Progression: PDS to CAT

$\mathsf{ENVI} \to \mathsf{CAT} \to \mathsf{Convert}$ Format: PDS to CAT

FRT000064D9_07_IF166S_TRR2.IMG

FRT000064D9_07_IF166S_TRR2_CAT.IMG

NASA

Applies Default Bad Bands

Photometric Correction [COS(i)]

FRT000064D9_07_IF166S_TRR2_CAT.IMG

FRT000064D9_07_IF166S_TRR2_CAT_PHT.IMG

CIRRUS [CRISM Clean]

03/22/2009

CRISM Workshop - Data Processing Walkthrough

VNIR Spectral Summary Parameters

ENVI → CAT → Spectral Analysis Utilities → Spectral Summary Products → VNIR Data FRT000064D9_07_IF166S_TRR2_CAT_PHT_DST.IMG

R770 (I/F @ 770 nm)

CRISM Workshop - Data Processing Walkthrough

RPEAK (Wavelength of VNIR

- Typical CRISM data analysis work flow (ENVI functionality):
 - Spectral unit identification
 - Guided spectral investigation
 - Link spectral data and selected spectral summary parameter(s)
 - Spectral extraction
 - Create ROIs based on linked information sources
 - Spectral ratios
 - Spectral library comparison

Spectral Unit Identification: D2300

$\begin{array}{l} \text{Image} \rightarrow \text{Tools} \rightarrow \text{Link} \rightarrow \text{Link} \text{ Displays...} \\ \text{Select displays for pixel coordinate link} \end{array}$

Pixel coordinate link must be done with common-detector data VNIR/IR geographic link available after map projection

ROIs and Mean Spectra: D2300

 $\mathsf{Image} \to \mathsf{Overlay} \to \mathsf{Region} \text{ of } \mathsf{Interest...}$

Construct ROIs from spectral parameter thresholds; manual specification; ROI intersection

 ROI file: FRT000064D9_D2300.roi Selecting target and reference ROIs from common columns will mitigate spectral smile effects in the ratio

CRISM Ratio Spectrum and Library Comparison: D2300

NASA

Processed Spectral Data

$\begin{array}{l} \text{Image} \rightarrow \text{Tools} \rightarrow \text{Link} \rightarrow \text{Link Displays...} \\ \text{Select displays for pixel coordinate link} \end{array}$

CRISM

ROIs and Mean Spectra: LCPINDEX

$\mathsf{Image} \to \mathsf{Overlay} \to \mathsf{Region} \text{ of Interest...}$

Construct ROIs from spectral parameter thresholds; manual specification; ROI intersection

ROI file: FRT000064D9_LCPINDEX.roi

CRISM Workshop - Data Processing Walkthrough

CRISMatio Spectrum and Library Comparison: LCPINDE

- Typical CRISM georeferencing procedure (CAT/ENVI functionality):
 - Project single cube (CAT)
 - MRO standard projection at native observation nadir resolution
 - Project multiple cubes to a common reference (ENVI GLT)
 - CAT or user supplied projection information
 - VNIR/IR data from common observation for layer stacking
 - Data from different observations for mosaicking
 - Layer stacking and/or mosaicking (ENVI)

CAT Map Projection

FRT000064D9_07_IF166S_TRR2_CAT_PHT_DST_PRJ.IMG

CRISM Workshop - Data Processing Walkthrough

Custom Map Projection: Build GLT

ENVI → Map → Georeference from Input Geometry → Build GLT Input X Geometry Band: CRISM DDR Band 5 (Longitude, areocentric, deg E) Input Y Geometry Band: CRISM DDR Band 4 (Latitude, areocentric, deg N) Input Projection: Geographic Lat/Lon Output Projection: User Defined or Mars Default (MRO) Output Pixel Size: User Defined – Default is native image resolution Set to consistent value for mosiacking or layer stacking Output Rotation: User Defined – 0 recommended in most cases

GLT: Geographic Lookup Table – A map of pixel locations relating one frame of reference to another

GLT Line Lookup

20.0 m/pxl

GLT Sample Lookup 20.0 m/pxl

FRT000064D9_07_DE166L_DDR1_GLT.IMG

Custom Map Projection: Apply GLT

CRISM Workshop - Data Processing Walkthrough

CRISM VNIR/IR Layer Stacking

Additional Slides

Walkthrough File List (1/2)

VNIR IMG files: FRT000064D9_07_IF166S_TRR2.IMG FRT000064D9_07_DE166S_DDR1.IMG

FRT000064D9_07_IF166S_TRR2_CAT.IMG FRT000064D9_07_IF166S_TRR2_CAT_PHT.IMG FRT000064D9_07_IF166S_TRR2_CAT_PHT_DST.IMG FRT000064D9_07_IF166S_TRR2_CAT_PHT_DST_SUM.IMG

FRT000064D9_07_IF166S_TRR2_CAT_PHT_DST_PRJ.IMG FRT000064D9_07_DE166S_DDR1_GLT.IMG FRT000064D9_07_IF166S_TRR2_CAT_PHT_DST_REF.IMG

IR IMG files: FRT000064D9_07_IF166L_TRR2.IMG FRT000064D9_07_DE166L_DDR1.IMG

FRT000064D9_07_IF166L_TRR2_CAT.IMG FRT000064D9_07_IF166L_TRR2_CAT_PHT.IMG FRT000064D9_07_IF166L_TRR2_CAT_PHT_ATM.IMG FRT000064D9_07_IF166L_TRR2_CAT_PHT_ATM_DST.IMG FRT000064D9_07_IF166L_TRR2_CAT_PHT_ATM_DST_DSP.IMG FRT000064D9_07_IF166L_TRR2_CAT_PHT_ATM_DST_DSP_SUM.IMG

FRT000064D9_07_IF166L_TRR2_CAT_PHT_ATM_DST_DSP_PRJ.IMG FRT000064D9_07_DE166L_DDR1_GLT.IMG FRT000064D9_07_IF166L_TRR2_CAT_PHT_ATM_DST_DSP_REF.IMG

CRISM PDS IMG files have accompanying label (LBL) files CAT/ENVI IMG files have accompanying header (HDR) files

CRISM TRR2 PDS IMG file CRISM DDR1 PDS IMG file

CAT (ENVI) format CRISM IMG data file Photometrically corrected version of the above Destriped version of the above Spectral summary parameter cube calculated from the above

Map projected version of the processed spectral data Custom geographic lookup table derived from the CRISM DDR Custom map projected version of the processed spectral data

CRISM TRR2 PDS IMG file CRISM DDR1 PDS IMG file

CAT (ENVI) format CRISM IMG data file Photometrically corrected version of the above Atmospherically corrected version of the above Destriped version of the above Despiked version of the above Spectral summary parameter cube calculated from the above

Map projected version of the processed spectral data Custom geographic lookup table derived from the CRISM DDR Custom map projected version of the processed spectral data

Walkthrough File List (2/2)

VNIR + IR IMG files: FRT000064D9_07_IF166SL_TRR2_LST.IMG FRT000064D9_07_IF166SL_TRR2_LST_RAT.IMG

Ancillary files: FRT000064D9_D2300.roi FRT000064D9_LCPINDEX.roi

FRT000064D9_D2300.sli FRT000064D9_LCPINDEX.sli

FRT000064D9_D2300.sta FRT000064D9_D2300_reference.sta FRT000064D9_LCPINDEX.sta FRT000064D9_LCPINDEX_reference.sta

FRT000064D9_07_IF166L_TRR2.ann FRT000064D9_07_IF166L_TRR2.grd

ENVI spectral library files have accompanying header (HDR) files

Merged CRISM VNIR and IR processed spectral data IR/VNIR merged ratio parameter

Region of interest file for D2300 spectral investigation Region of interest file for LCPINDEX spectral investigation

Spectral library file for D2300 spectral investigation Spectral library file for LCPINDEX spectral investigation

Spectral statistics for D2300 target ROI Spectral statistics for D2300 reference ROI Spectral statistics for LCPINDEX target ROI Spectral statistics for LCPINDEX reference ROI

Annotation file for map projected images Grid definition file for map projected images

CRISM TRR3 Data Filtering Preview

FRT000064D9_07_IF166L_TRR2.IMG

CRISM Spectral Profile

FRT000064D9_07_IF166L_TRR2_IKF.IMG

N'A SA

