Sounding Radars 101 Roger Phillips Isaac Smith

VHF antenna On Apollo 17

If you already know that distance = velocity×time you're in great shape, though really 2×distance = velocity×time

What is radar doing?

Two Way Time (TWT)

Signal travels away from transmitter

Reflects off of a surface

Travels back to receiver

Jack in 20 years

Step I time = h / v I. 3. Step 2 time = h / v

total time = $2 \times h / v$

Velocities in Media

Signal Velocity depends on real part of permittivity, \mathcal{E}' $V \approx V_0 / \sqrt{\varepsilon'}$ Space $CO_2 H_2O$ Rock $V_0 = \frac{3 \times 10^8}{\sqrt{1}} \qquad V = \frac{3 \times 10^8}{\sqrt{2.1}} \qquad V = \frac{3 \times 10^8}{\sqrt{3.15}} \qquad V = \frac{3 \times 10^8}{\sqrt{-4 \text{ to } 12}}$ Fastest Slowest $\varepsilon = \varepsilon' + i\varepsilon''$; $\tan \delta = \varepsilon'' / \varepsilon'$

Basic quest is for depth, but estimates of $\mathcal{E}' \& \tan \delta$ constrain composition and porosity

Signal return time

t = d / v

$$t_{air} = 2h / v_{air}$$

$$t_{rock} = 2d / v_{rock}$$

$$\frac{air \mathcal{E}' \sim 1}{v_{air} = c} \qquad frequence here = t_{air} + t_{rock}$$

$$\frac{air \mathcal{E}' \sim 1}{v_{air} = c} \qquad frequence here = t_{air} + t_{rock}$$

$$\frac{Rock \mathcal{E}' \sim 9}{v_{rock} = c/3} \qquad frequence here = t_{air}$$

These are really relative permittivities; i.e., divided by ε_0

Stack individual echo traces along track to build up a <u>radargram</u>

Vertical resolution Time-bandwidth product ~ unity; $\Delta t \Delta f \sim 1; \ \Delta t \sim 1/\Delta f; \ \Delta h \approx \frac{V_0}{2\sqrt{\varepsilon'}} \frac{1}{\Delta f}$

Transmitter signal is a chirp, which enhances output energy by spreading the bandwidth over time, $E = A^2 \times t$; $A^2 = P$

9

Dreaded Sidelobes

- Chirp signal has sharp cutoffs in frequency domain
- Rectangle (box car) \overleftarrow{FT} sin(x)/x (sinc function)

Reflected signal not so simple

Time, micro-sec

time

Again, surface moves up Subsurface moves down due to decreased velocity

media 1

This + next 4 slides: time to depth w/ different ϵ'

<u>Depth conversion w/ multiple ε' </u> RFZ_{3} depth conversion $\varepsilon' = 3.15$ Relative elevation (km) Surface H_2O 0 RFZ₃ base (LB₃) H_2O Linear fit Test reflector RFZ_3 depth conversion $\varepsilon' = 2.11$ Ε ·1. 1. 1.0 CO_2 0.8 0.6 0.4 0.2 $H_{2}O$ 0.d

How deep is a reflector?

How deep is a reflector?

631 pixels <u>x</u> 37.5 ns per pixel 23.7 μs TWT

How deep is a reflector?

Sometimes you get clutter

Sometimes you get clutter

SHARAD Comparison with MARSIS

	MARSIS	SHARAD
Frequency Bands	1.3-2.3 MHz, 2.5-3.5 MHz, 3.5-4.5 MHz, 4.5-5.5 MHz	15-25 MHz
Vertical Resolution $(\varepsilon' = 5)$	~100 m (1 MHz BW)	~10 m (10 MHz BW)
Penetration Depth	> 3 km in ice- dominated material	Few 100 m in rock Up to 2 km in ice
Horizontal Resolution (along-track x cross-track)	5-9 km x 15-30 km	0.3-1 km x 3-6 km
Processing	Mostly on-board	Mostly on the ground

Congratulations! You have passed Sounding Radars 101