Sounding Radars IOI

Roger Phillips Isaac Smith

Science

If you already know that distance $=$ velocity×time

you're in great shape, though really

$2 \times$ distance $=$ velocity×time

What is radar doing?

Pulse of energy sent

Some energy is reflected
Intensity and time are recorded

Two Way Time (TWT)

Signal travels away from transmitter
Reflects off of a surface
Travels back to receiver
Jack in 20 years

$$
\begin{gathered}
\text { Step } 1 \text { time }=\mathrm{h} / \mathrm{v} \\
\text { Step } 2 \text { time }=\mathrm{h} / \mathrm{v} \\
\text { total time }=2 \times \mathrm{h} / \mathrm{v} \\
V=\frac{1}{\sqrt{\mu \varepsilon}} \approx \frac{1}{\sqrt{\mu_{0} \varepsilon^{\prime} \varepsilon_{0}}}=\frac{V_{0}}{\sqrt{\varepsilon^{\prime}}}
\end{gathered}
$$

$$
3 .
$$

Velocities in Media

Signal Velocity depends on real part of permittivity, ε^{\prime}

$$
V \approx V_{0} / \sqrt{\varepsilon^{\prime}}
$$

Space

$$
V_{0}=\frac{3 \times 10^{8}}{\sqrt{1}} \quad V=\frac{3 \times 10^{8}}{\sqrt{2.1}} \quad V=\frac{3 \times 10^{8}}{\sqrt{3.15}} \quad V=\frac{3 \times 10^{8}}{\sqrt{\sim 4 \text { to } 12}}
$$

CO_{2}
$\mathrm{H}_{2} \mathrm{O}$
Rock

Fastest

$$
\varepsilon=\varepsilon^{\prime}+i \varepsilon^{\prime \prime} ; \tan \delta=\varepsilon^{\prime \prime} / \varepsilon^{\prime}
$$

Basic quest is for depth, but estimates of $\varepsilon^{\prime} \& \tan \delta$
constrain composition and porosity

Signal return time

$$
t=d / v
$$

These are really relative permittivities; i.e., divided by ε_{0}

Build a radargram

Stack individual echo traces along track to build up a

Horizontal resolution

$$
t_{s s}=2 d \sqrt{e_{r}} / C_{0}
$$

b)

Vertical resolution

Time-bandwidth product ~ unity;

$$
\Delta t \Delta f \sim 1 ; \quad \Delta t \sim 1 / \Delta f ; \quad \Delta h \approx \frac{V_{0}}{2 \sqrt{\varepsilon^{\prime}}} \frac{1}{\Delta f}
$$

Transmitter signal is a chirp, which enhances output energy by spreading the bandwidth over time, $E=A^{2} \times t ; \quad A^{2}=P$

There is a price to be paid for this.

$$
\text { Bandwidth }=f_{1}-f_{2} \quad \text { Energy }=A^{2} T_{C}
$$

Dreaded Sidelobes

- Chirp signal has sharp cutoffs in frequency domain
- Rectangle (box car) $\underset{\mathrm{FT}}{ } \sin (\mathrm{x}) / \mathrm{x}$ (sinc function)

Reflected signal not so simple

Sidelobes or ss reflectors or both? We have been fooled before!

Tradeoff in weighting to suppress sidelobes \& resolution

media 1
$\varepsilon=1$

Surface moves up
Subsurface moves down due to decreased velocity

Again, surface moves up Subsurface moves down due to decreased velocity

media 1
$\varepsilon=1$

$$
\begin{aligned}
& \text { media } 1 \\
& \varepsilon=1
\end{aligned}
$$

$$
\varepsilon^{\prime} 3.8
$$

This + next 4 slides: time to depth w/ different ε^{\prime}

$\begin{array}{ll}\varepsilon^{\prime} & 3.4\end{array}$

ε^{\prime}
2.6

2.2

Depth conversion w/ multiple ε^{\prime}

How deep is a reflector?

How deep is a reflector?

631 pixels
$\times \quad 37.5$ ns per pixel
$23.7 \mu \mathrm{TWT}$

How deep is a reflector?

Sometimes you get clutter

media 1
 $\varepsilon=1$

nearby mountain (not nadir)

Sometimes you get clutter

Sometimes you get clutter

SHARAD Comparison with MARSIS

	MARSIS	SHARAD
Frequency Bands	$1.3-2.3 \mathrm{MHz}, 2.5-3.5$ $\mathrm{MHz}, 3.5-4.5 \mathrm{MHz}$, $4.5-5.5 \mathrm{MHz}$	$15-25 \mathrm{MHz}$
Vertical Resolution $\left(\varepsilon^{\prime}=5\right)$	$\sim 100 \mathrm{~m} \mathrm{(1} \mathrm{MHz}$ $\mathrm{BW})$	$\sim 10 \mathrm{~m} \mathrm{(10} \mathrm{MHz}$ $\mathrm{BW})$
Penetration Depth	$>3 \mathrm{~km}$ in ice- dominated material	Few 100 m in rock Up to 2 km in ice
Horizontal Resolution (along-track x cross-track)	$5-9 \mathrm{~km} \times 15-30 \mathrm{~km}$	$0.3-1 \mathrm{~km} \times 3-6 \mathrm{~km}$
Processing	Mostly on-board	Mostly on the ground

Congratulations! You have passed Sounding Radars IOI

