Thick Ice Deposits in Deuteronilus Mensae, Mars: A SHARAD case study

Jeffrey Plaut JPL-Caltech

SHARAD/MARSIS Data Users' Workshop
16 March 2014

Outline

- Review of the Deuteronilus area
- Examples of SHARAD detections
- Mapping criteria
- Occurrence, regional trends, volume estimate

Deuteronilus Mensae

A Big Place

A Big Place

Geomorphic Settings of Lobate Aprons

CTX - MSSS

CTX - MSSS

SHARAD Sounding of Lobate Aprons

2145_01

$5 \mu \mathrm{~s}$

HRSC

Subsurface, not Clutter

SHARAD Data

Clutter simulation

Clutter simulation

SHARAD Data

Converting Time to Depth

Time

Converting Time to Depth

Converting Time to Depth

Depth

50 km

Valley in West Deuteronilus MOLA Elevation on THEMIS Day IR

Time

THEMIS VIS

HRSC
Topo

Time

Depth

sorthem

Depth

Time

Clutter Simulation

Simulation by UT-Austin

Mapping Criteria

- Compared all potential subsurface detections with clutter simulations. Reflector must be unambiguously distinct from clutter echoes.
- Transformed radargram to time dimension. Reflector must be in a "sensible" position relative to extrapolated valley floor.
- Verified extent/continuity/repeatability of reflector detection by comparing adjacent and overlapping tracks, where available.

SHARAD Coverage

Detected Interfaces

Summary

- SHARAD signals penetrate lobate aprons to $\sim 1 \mathrm{~km}$ depth.
- Ice is widespread in Deuteronilus Mensae; most "classic" aprons show an ice signature.
- Lobate aprons, lineated valley fill, concentric crater fill all show the same signature.
- Aprons to the east are less amenable to basal reflector detection.
- Surface area of observed ice masses $=21,100 \mathrm{~km}^{2}$
- Volume (assuming average thickness of 300 m) $=6325 \mathrm{~km}^{3}$
- $\sim 5 \mathrm{~cm}$ global equivalent layer (compare to PLD: $\sim 20 \mathrm{~m}$)
- Current ice deposits ~ 100 s of MY old are intriguing targets for further exploration.

