Lunar and Planetary Science Conference, March 18th, 2015

COMMUNITY USER WORKSHOP ON PLANETARY LIBS (CHEMCAM) DATA

Introduction to LIBS

Sam Clegg and the ChemCam team

Creating LIBS Sparks

LIBS Spots and Dust Removal

NASA/JPL-Caltech/LANL/IRAP/CNES/LPGNantes/I AS/CNRS/MSSS

Brushed Surface

> "Wernecke" Sol 169

NASA/JPL-Caltech/MSSS/Honeybee Robotics/LANL/CNES

LIBS Sensitivies, ChemCam Configuration

Ca LIBS Spectrum-LANL Testbed

18 Mar 2015

Carefully Processed Spectra Lead to Quantitative Analysis Continuum Removal, Spectral Calibration, Distance Correction are Critical

18 Mar 2015

ChemCam Spectra

Fully Processed Spectra Ready for Quantitative Analysis Much can be Qualitatively Observed

18 Mar 2015

Chemical Matrix Effects Complicate Quantitative Analysis

- Conventional Elemental Analysis
 - Peak Area or Height vs. Concentration
 - Each Peak is Analyzed Independently
- Sample Elemental and Molecular Composition Influences:
 - Laser-to-Sample Coupling Efficiency
 - Chemical Reactions within the Plasma
 - Collisional Quenching
- Chemical Matrix Effects
 - Increase Scatter and Uncertainty
- Chemical Matrix Effects Compensation
 - Cal-Free LIBS
 - Various Normalization

Multivariate analyses are used to compensate for these matrix effects

Quantitative Calibration

3 m standoff distance			
BHVO-2	DH 4912	Norite	Swy-2
GBW 07105	JR-1	GYP A	SGR-1
NBS688	GBW 07113	GYP C	VS MO7
BIR-1	Ultramafic*	GYP D	UNS ZK
BCR-2	Umph*	MHC1356*	GUW GNA
JA-1	Cadillac*	MHC2319*	M6 Haggerty*
Ja2	VH-1*	VZO106	GYP B
Ja3	MSHA*	VZO114	MHC3828*
MO12	Moppin*	NAu2-Hi-S	UNS AK
MO14	ВК-2	NAu2-Med-S	GBW 07313
JB-2	BWQC1*	NAu2-Lo-S	GBW 07316
GSR-2	Trond*	KGa2-Med-S	SARM51
BE-N	WMG*	NBS-88b	STSD-1
AGV-2	VH-49*	JDo-1	STSD-3
JB-3	Grano Dike*	GBW 07108	STSD-4
BT-2	Macusanite	NBS 97a	
GBW 07110	Picrite	NBS 98a	
GBW07104	Shergottite	NAu2	

* = from Dyar lab, all others from commercial sources

backup

Ca Electronic Energy Level Diagram

Emission lines are produced as atoms relax from upper state to lower state. Lower state is not always the ground state.