Lunar and Planetary Science Conference, March 18, 2015

ChemCam Data
Processing -
Quantitative
Calibration

R. Anderson, S. Bender, S. Clegg, A.
Cousin, M.D. Dyar, C. Fabre, O.
Forni, J. Frydenvang, O. Gasnault,
J. Lasue, S. Maurice, V. Sautter,

R. Tokar, R. Wiens
and the ChemCam team

March 2015 LPSC ChemCam trai

NASA/JPL-Caltech/MSSS




Quantitative Calibration
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Quantitative Analysis

e Goal: to find a regression model that accurately converts from ChemCam LIBS
spectra to elemental composition

Use spectra from targets of known composition to generate the model

How to evaluate model performance? Use Root Mean Squared Error (RMSE) and
cross-validation

RMSE = \/Zn(Ytrue_Ypredicted)z

n
— RMSE is the standard way to estimate the accuracy of a regression in chemometrics

— Has the same units as the quantity being predicted
— Squared error strongly penalizes the worst predictions

Cross validation

— Many regression models are prone to over-training: they can predict the composition
of training samples to arbitrary accuracy, but then will not perform well on unknown
data

* A “simpler” model typically is more generalizable

— Cross validation mitigates overtraining by iteratively removing samples from the
training set and predicting them as if they are unknowns

— If you have enough data, keeping an independent “test set” is the best way to predict
against overtraining
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Quantitative Calibration

Univariate vs Multivariate Methods

e “Univariate” methods:
— Regress a single variable (e.g. emission line strength) against composition to come up with a

calibration curve

— Advantages:
 Simple, easy to understand
* You can choose which emission line to use

— Disadvantages:
* Do not correct for “matrix effects” (factors that cause line strength to vary independent of elemental

concentration)
* Discards much of the information in the spectrum

e Multivariate methods:
— Use the entire spectrum (or a significant portion of it) to develop a regression model

— Advantages:
e Can correct for some matrix effects

¢ Uses most available information

— Disadvantages:
* Harder to understand what the model is doing

* More computationally intensive
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Quantitative Calibration

Current CCAM Quantitative Calibration

* 66 Geochemical Standards Calibration Database, Collected with the ChemCam
Flight Model under Mars atmospheric conditions

e Partial Least Squares 1 (PLS1):

— Multivariate method that regresses multiple X observations (spectra)
against a single y value (composition)

— Closely related to PCA (# of components determines complexity of
the model)
e Generate independent optimized models for all major element oxide: SiO,, TiO,,
Al,O,, FeOT, MgO, Ca0, Na,0, K,O

— Adjustable parameters:
* Training spectra
* # of components
 Spectral Normalization

e “Optimum” model defined as minimum leave-one-out cross validation RMSE,
with some adjustments made to correct for specific cases
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Idealized RMSE Curve
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710 composition SiO2 (wt.%)
# of components
Si02  Ti02  Al203 FeOT MgO CaO MNa20 K20 Total
TRAINING SET MIN. 0.2 0 0 0 0 0.1 0 0
TRAINING SET 15T QUARTILE 40.8 0.27 2 2.7 0.8 2.5 0.3 0.3
TRAINING SET MEDIAN 48.6 0.68 13.1 5} 2.2 1.1 2.4 0.8
TRAINIMNG SET 3RD QUARTILE 29.3 1.47 16.1 12.1 6.4 12.8 3.4 1.8
TRAINING SET MAX, 754 2.9 38.8 36.2 49.2 24.9 2.9 0.4
NORMALIZATION 3 1 1 1 1 3 1 3
NUMBER OF COMPONENTS 8 10 4 Fi 8 8 10 4
RMSEP 1.1 0.55 3.7 4 3 3.3 0.7 0.9 10.1
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Quantitative Calibration

Quantitative elemental calibration

e As s typical for any analytical instrument, ChemCam’s precision (variation
in results from repeat analyses of the same target) is considerably better
than the absolute accuracy (RMSE)

Table 4. Precisions obtained on synthetic glass Norite and Shergottite rover calibration
targets. Exact compositions are given for reference.

n | Si0z | TiOz | Al20s5 | FeOT | MgO | Ca0 | Na20 | K20
Norite3 479 [0.70 | 147 |159 |962 |128 | 153 |0.06
Std dev sol 352 9 | 034 |005|012 |0.24 |0.12 [0.32 | 011 |----
Std dev sol 357 0.68 [0.04 |0.21 |0.27 |[0.13 |0.50 |0.12 |-----
Shergottitea 454 (043 | 108 |176 |6.39 |143 | 157 [0.11
Std dev sol 271 0.60 [0.03 |0.18 |0.26 |0.14 |0.37 | 0.10 |0.04
Std dev sol 352 0.62 [0.04 |0.14 |0.23 |0.15 | 0.30 | 0.09 |0.04
Std dev sol 357 0.37 [0.02 |0.07 |0.12 |0.07 |035 |0.11 |0.04
Mean std dev 043 1005 (013 1027 009 1030 1011 [004
Std dev, all 251153 (0.14 | 057 |183 | 049 | 042 | 049 |0.14
Shergottite obs.
3Norite and Shergottite compositions are from Wiens et al. (2013).

O
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Blaney et al., 2014

March 2015 LPSC ChemCam training 6




Quantitative Calibration

Improving CCAM’s Quantitative Calibration

e How are we improving quantitative CCAM results?
1. Expand the training database:

— Current results are based on a database of 66 geostandards

— We have collected data for an expanded database containing 482 standards,
including many minerals

— Larger database allows more robust cross validation (k-fold vs leave-one-out)
2. Improve calibration methods:

— We are currently experimenting with several different methods:
—  “Sub-model” Partial Least Squares

e  Use aratio-based “calibration transfer” method to make terrestrial database spectra more
similar to spectra collected on Mars

*  Create PLS models that “specialize” in a certain composition range (e.g. a “low”, “mid”, and
“high” Si02 model)

— Univariate
e Use calibration target info from Mars to develop regressions

— Independent Components Analysis (ICA) regression
e  Similar to univariate, but uses ICA score rather than individual line strength

— Validate against Mars targets for which we can constrain composition
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Prediction (wt.%)
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* Preliminary results from “submodel” PLS are promising:
e “Old” Si0O2 RMSE =7.1 wt.%
e “New” SiO2 RMSE (full model) =5.7 wt.%
e “New” SiO2 RMSE (using submodels) ~ 4.4 wt.%
e “Old” MgO RMSE =3 wt.%
e “New” MgO RMSE (full model) = 1.8 wt.%
* “New” MgO RMSE (using submodels) ~ 0.41 wt.%

e Samples with “bad” compositions in the “old” calibration (e.g. SiO2 >80%, MgO
<0%) are significantly improved
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Quantitative Calibration

Conclusions
e We are currently using PLS1 for quantitative results

e Accuracy is rigorously estimated using cross validation and RMSE
— CCAM precision is better than accuracy

* Changes in measured composition are more reliable than absolute
compositions

 Lots of ongoing work to improve calibration!

— Expanded database shows improved results

III

— “submodel” PLS, ICA, Univariate methods being investigated and

validated
* New calibration should be available by August 2015

A calibration paper describing the improvements in detail is in the
works. Stay tuned!

* Feel free to contact me with questions about quantitative calibration:
rbanderson@usgs.gov
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Quantitative Calibration
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